Some laboratory mice were given specially engineered insuling-producing genes. These genes were then remotely activated using radio waves. This could mean a whole new field of medical procedures in which we turn genes on and off at will.

This breakthrough is the work of geneticists at New York’s Rockefeller University. It’s a pretty circuitous path from the initial burst of radio waves to the activation of the gene, and there’s still a lot of refinement and improvement that needs to be made before this can be used in medical treatments, but still – we’re talking about the ability to modify the behavior of genes without ever going inside a patient’s body. That’s a potentially colossal advance.

Admittedly, while the treatment itself is totally non-invasive, the researchers did first have to inject some nanoparticles onto the mice’s cells in order to affect their genes. It’s a bit of a complex process, but Nature has a good explanation of just what was involved:

Friedman and his colleagues coated iron oxide nanoparticles with antibodies that bind to a modified version of the temperature-sensitive ion channel TRPV1, which sits on the surface of cells. They injected these particles into tumours grown under the skins of mice, then used the magnetic field generated by a device similar to a miniature magnetic-resonance-imaging machine to heat the nanoparticles with low-frequency radio waves. In turn, the nanoparticles heated the ion channel to its activation temperature of 42 °C. Opening the channel allowed calcium to flow into cells, triggering secondary signals that switched on an engineered calcium-sensitive gene that produces insulin. After 30 minutes of radio-wave exposure, the mice’s insulin levels had increased and their blood sugar levels had dropped.

Read full article


Get the latest breaking news & specials from Alex Jones and the Infowars Crew.

Related Articles