We all know that computers are pretty good at crunching numbers. But when it comes to analyzing reams of data and looking for important patterns, humans still come in handy: We’re pretty good at figuring out what variables in the data can help us answer particular questions. Now researchers at MIT claim to have designed an algorithm that can beat most humans at that task.

[AI can now muddle its way through the math SAT about as well as you can]

Max Kanter, who created the algorithm as part of his master’s thesis at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), entered the algorithm into three major big data competitions. In a paper to be presented this week at IEEE International Conference on Data Science and Advanced Analytics, he announced that his “Data Science Machine” has beaten 615 of the 906 human teams it’s come up against.

The algorithm didn’t get the top score in any of its three competitions. But in two of them, it created models that were 94 percent and 96 percent as accurate as those of the winning teams. In the third, it managed to create a model that was 87 percent as accurate. The algorithm used raw datasets to make models predicting things such as when a student would be most at risk of dropping an online course, or what indicated that a customer during a sale would turn into a repeat buyer.

Read more

Related Articles